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A. EQUALITY CASES

Here we aim to prove the statement of Proposition 2.3:

Let T be a leaf-positive ultrametric tree of radius 1. Then cT = 1− 1
n if and only if T is a

star-metric.

Recall that for an ultrametric tree T :

(1) We say that T is leaf-positive if every edge of T adjacent to a leaf has positive weight. Note
that this is equivalent to saying that for any vertex i of T , H(i) = 0 if and only if i is a leaf.

(2) We say that T is a star-metric if, for any two leaves i, j of T , the height of their lowest common
ancestor H(i ∨ j) is either 0 or 1.

The leaf-positive property is relevant, since leaves on edges of weight zero can affect the
value of ĉT (see Example A.2). However, it suffices to settle the equality cases for leaf-positive
trees, as the next result shows.

Lemma A.1. Let T be an ultrametric tree of radius 1. Let T ′ be the leaf-positive tree obtained
from T by contracting all length 0 pendants, then ĉT = ĉT ′ .

Proof. If T is not leaf-positive, there exists a leaf i of T such that its parent h satisfies H(h) = 0.
There are two cases, either i is isolated or i has an adjacent leaf j.

If i is isolated, let T ′ be the ultrametric tree obtained from T by contracting the edge between
i and h (the pendant of i). Then the matrices Ac of T and A′

c of T ′ are equal, hence ĉT = ĉT ′ .

If i has an adjacent leaf j, d(i, j) = 0 since T is ultrametric, so d(i, k) = d(j, k) = d(h, k) for
every k ̸= i, j leaf. Let T ′ be the ultrametric tree obtained from T by contracting i and j. Then
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the matrices A(c) of T and A′(c) of T ′ satisfy the following

A(c) =


c c c− d(i,k)

2 . . .

c c c− d(j,k)
2 . . .

c− d(i,k)
2 c− d(j,k)

2 c . . .
...

...
...

. . .



∼


0 0 0 . . .

0 c c− d(h,k)
2 . . .

0 c− d(h,k)
2 c . . .

...
...

...
. . .

 =

 0 0

0 A′(c)



Hence ĉT = ĉT ′ . We obtain the result by iterating this process until T ′ is leaf-positive. □

Example A.2. Let T be the following binary tree with 4 leaves:

1 2 3 4

where the dashed edges have weight 0 and the solid edges have weight 1. T is ultrametric but
not leaf-positive, so it only defines a pseudometric on its set of leaves since d(1, 2) = 0 and
similarly for 3 and 4. The associated distance matrix is:

D =


0 0 2 2

0 0 2 2

2 2 0 0

2 2 0 0


and one can compute that ĉT = 1/2 < 3/4. Note that T can be contracted into the star tree T ′

with two leaves, and in agreement with Proposition 2.3 we have ĉT = 1/2.

We now proceed to prove Proposition 2.3. for leaf-positive trees. In fact, we answer the more
general question that arises naturally from Proposition 2.2:

If T is a leaf-positive ultrametric tree of radius 1. Let U be an upper subtree of T and M be
the set of minimal elements of U . With the same notation as in Proposition 2.2, define the matrix
AT,U (c) whose rows and columns indexed by M with entries

(AT,U (c))ij =

c−H(i ∨ j) i ̸= j

c− (1− 1
ni
)H(i) i = j.
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Define ĉT (U) as the smallest c ≥ 0 that makes AU
c positive semi-definite. We know that 0 <

ĉT (U) ≤ 1 − 1
n , so when is ĉT (U) = 1 − 1

n? We arrive at an answer by retracing the proof of
Proposition 2.2, but first, let us prove the following lemma:

Lemma A.3. Let T be a leaf-positive equidistant tree of height 1. Let U be an upper subtree of
T and M be the set of lowest elements of U . If c = ĉT (U) then the matrix AT,U (c) is singular.

Proof. The matrix AT,U (0) is has at most one negative eigenvalue by [2, Thm. 3]. The matrix
AT,U (c) is the rank 1 update of AT,U (0) by a multiple of the all-ones matrix c1n×n, hence the
eigenvalues of AT,U (c) increase continuously as c increases. This is a direct consequence of the
interlacing property for rank 1 updates [1, Thm. 1]. If λ1(c) is the smallest eigenvalue of AT,U (c)

as a function of c, the previous statements say that λ1(c) is an increasing continuous function
on c. We conclude that ĉT (U) is the minimum c for which λ1(c) = 0, in particular, AT,U (c) is
singular. □

Proposition A.4 (Equality case of Proposition 2.2). Let T be a leaf-positive ultrametric tree of
radius 1. Let U be an upper binary subtree of T , M be the set of lowest elements of U . For each
i ∈ M , let ni be the number of leaves of T below i, and let n :=

∑
i∈M ni. Then ĉT (U) = 1− 1

n if
and only if U is star-metric and all the elements of M have height 0 or 1.

Remark A.5. When U equals the whole tree T , we have ĉT = ĉT (U). Thus, Proposition 2.3
follows as a corollary.

Proof. Let us denote ⟨a⟩ = 1 − 1
a for any a ∈ Z+. Like in Proposition 2.2 we may assume T is

binary.

First, we prove that ĉT (U) = ⟨n⟩ implies that U is star-metric and all the elements of M have
height 0 or 1. We prove this statement for all pairs (T,U) by induction on |V (T )| + |M |. The
base case holds trivially; consider a larger pair (T,U). At least one of the following statements
is true:

(1) There is a leaf i of U with no siblings in U .

(2) There are sibling leaves i, j of U with a common parent h = i ∨ j.

In the first case, by an argument identical to the one in proposition 2.2, we can obtain a tree
T ′ and an upper subtree U ′ of T ′ such that the lowest elements of U ′ and U are the same as well
as their descendants in T and T ′ respectively. Furthermore AT,U (c) = AT ′,U ′

(c) for all c > 0,
hence ĉT ′(U ′) = ĉT (U) = ⟨n⟩. Since the induction hypothesis applies to (T ′, U ′), it follows that
U ′ is star-metric and all the elements of M have height 0 or 1, this implies the same statement
for (T,U).

In the second case, by retracing the proof of Proposition 2.2, we arrive at the following equa-
tion

AT,U (c) = BT,U (c) +D,
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where D is the diagonal matrix diag(⟨ni⟩ (H(h)−H(i)), ⟨nj⟩ (H(h)−H(j))) and BU
c is a matrix

satisfying that

BT,U (c) ∼

 ( 1
ni

+ 1
nj
)H(h) 0

0 AT ′,U ′
(c)


where U ′ = U\ {i, j} is the binary upper subtree of T obtained by removing i and j from U . This
proves the inequality ĉT (U) ≤ ĉT (U

′). Compounding this with our assumption that ĉT (U) =

⟨n⟩ and Proposition 2.2, we obtain that ĉT (U ′) = ⟨n⟩.

By the induction hypothesis, we know then that U ′ is star-metric and all the elements of M
have height 0 or 1. Now, h is a minimal element of U ′, so it has to have height 0 or 1, but it
cannot have height 0, as we have assumed T is leaf-positive and h is not a leaf as the ancestor
of both i and j, so H(h) = 1. This implies that U is star-metric as H(i ∨ j) = 1.

Now we are only left with proving that the heights of i and j must be 0 or 1. For this purpose,
we use the explicit form of AT,U (c)

(AT,U (c))kl =

c− 1 k ̸= l

c− ⟨nk⟩H(k) k = l.

For c = ⟨n⟩ we can rewrite the matrix as

AT,U (⟨n⟩) = (⟨n⟩ − 1)E(IdM +E−11n×n),

where IdM is the |M | × |M | identity matrix and E is the diagonal matrix

Ekl =

0 k ̸= l
1−⟨nk⟩H(k)

⟨n⟩−1 k = l.
.

The matrix E is invertible since for every k ∈ M , ⟨nk⟩ < 1 and H(k) ≤ 1. This way, we can
compute the determinant of AT,U (⟨n⟩) explicitly as

det(AT,U (⟨n⟩)) =

[ ∏
k∈M

(1− ⟨nk⟩H(k))

][
1− 1

n

∑
k∈M

nk

nk(1−H(k)) +H(k)

]
.(A.1)

By Lemma A.3 the previous determinant is zero, but this can only happen when∑
k∈M

nk

nk(1−H(k)) +H(k)
= n.

Now, for each k ∈ M 1 ≤ nk(1−H(k)) +H(k) ≤ nk, hence we have the following term by term
inequality

n =
∑
k∈M

nk

nk(1−H(k)) +H(k)
≤

∑
k∈M

nk = n,

which in reality is an equality, so we must have term by term equality. This means that for
every k ∈ M nk(1−H(k)) +H(k) = 1, which holds only if for every k ∈ M either H(k) = 1 or
H(k) = 0 and k is a leaf of T since T is leaf-positive. We conclude that U is star-metric and the
elements of M have heights 0 or 1.



APPENDIX - TREE METRICS AND LOG-CONCAVITY FOR MATROIDS 5

Now we prove the converse statement. Assume that U is star-metric and the elements of M
have heights 0 or 1. Let M0 = {k ∈ M : H(k) = 0} and define M1 = {k ∈ M : H(k) = 1}. If
|M1| = 0, then n = |M | and

(A.2) (AT,U (c))kl =

c− 1 k ̸= l

c k = l

for which we have already established ĉT (U) = ⟨n⟩. Let us prove that we can reduce to this
case. If |M1| > 0, initially:

(AT,U (c))kl =


c− 1 k ̸= l

c k = l ∈ M0

c− ⟨nk⟩ k = l ∈ M1

.

Let i ∈ M1, note ni > 1. Let M ′ = M ⊔ {i2, . . . , ini} and let BT,U (c) be the M ′ ×M ′ matrix:

BT,U (c) =



2− ⟨1⟩ − ⟨1⟩
. . .

2− ⟨ni − 1⟩ − ⟨1⟩

0

0 AT,U (c)


,

where the first ni − 1 rows and columns are indexed by {i2, . . . , ini−1}. By reversing the row
and column reduction in Proposition 2.2, working backwards, from ini

towards i2 on each of
the new ni − 1 rows and columns, the matrix BT,U (c) can be made similar to a matrix CT,U (c)

with entries:

(CT,U (c))kl =


c− 1 k ̸= l

c k = l ∈ M0 ∪ {i, i2, . . . , ini
}

c− ⟨nk⟩ k = l ∈ M1\ {i}

,

and naturally AT,U (c) is positive semidefinite if and only if CT,U (c) is positive semidefinite.
This process can be repeated for each i ∈ M1 until one obtains an n×n matrix identical to (A.2),
allowing us to conclude that ĉT (U) = ⟨n⟩. □
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