APPENDIX - TREE METRICS AND LOG-CONCAVITY FOR MATROIDS

FEDERICO ARDILA-MANTILLA, SERGIO CRISTANCHO, GRAHAM DENHAM, CHRISTOPHER EUR,
JUNE HUH, AND BOTONG WANG

A. EQUALITY CASES

Here we aim to prove the statement of Proposition 2.3:

Let T be a leaf-positive ultrametric tree of radius 1. Then ¢y =1 — L ifand only if T'isa

star-metric.
Recall that for an ultrametric tree 7"

(1) We say that T is leaf-positive if every edge of T adjacent to a leaf has positive weight. Note
that this is equivalent to saying that for any vertex i of 7', H(¢) = 0 if and only if i is a leaf.

(2) We say that T is a star-metric if, for any two leaves i, j of T, the height of their lowest common
ancestor H (i V j) is either O or 1.

The leaf-positive property is relevant, since leaves on edges of weight zero can affect the
value of ér (see Example A.2). However, it suffices to settle the equality cases for leaf-positive
trees, as the next result shows.

Lemma A.1. Let T be an ultrametric tree of radius 1. Let 7" be the leaf-positive tree obtained
from T by contracting all length 0 pendants, then é7 = érv.

Proof. If T is not leaf-positive, there exists a leaf i of 7' such that its parent h satisfies H(h) = 0.
There are two cases, either 7 is isolated or ¢ has an adjacent leaf j.

If i is isolated, let 7" be the ultrametric tree obtained from 7" by contracting the edge between
i and h (the pendant of 7). Then the matrices A. of T'and A, of T" are equal, hence é; = épv.

If ¢ has an adjacent leaf j, d(i,j) = 0 since T is ultrametric, so d(i, k) = d(j,k) = d(h, k) for
every k # i, j leaf. Let 7" be the ultrametric tree obtained from 7" by contracting ¢ and j. Then
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the matrices A(c) of T and A’(c) of T” satisfy the following

oy . o d(gk)
c c c— L(Jék)
Ale) = c— d(iz,k) o_ d(]'Q,k)
[0 0 0
0 c c— @ . 0 0
~ _d(h,k) =
0o 2 ¢ 0| A'(c)
Hence ér = ép/. We obtain the result by iterating this process until 7" is leaf-positive. O

Example A.2. Let T be the following binary tree with 4 leaves:

where the dashed edges have weight 0 and the solid edges have weight 1. T is ultrametric but
not leaf-positive, so it only defines a pseudometric on its set of leaves since d(1,2) = 0 and
similarly for 3 and 4. The associated distance matrix is:

NNO O
NN OO
S O NN
S O NN

and one can compute that ér = 1/2 < 3/4. Note that T’ can be contracted into the star tree 7"
with two leaves, and in agreement with Proposition 2.3 we have é¢; = 1/2.

We now proceed to prove Proposition 2.3. for leaf-positive trees. In fact, we answer the more
general question that arises naturally from Proposition 2.2:

If T is a leaf-positive ultrametric tree of radius 1. Let U be an upper subtree of 7" and M be
the set of minimal elements of U. With the same notation as in Proposition 2.2, define the matrix
AT-Y(c) whose rows and columns indexed by M with entries

c— H(iV j) i#
c—(1—-YYH®GE) i=j].

z

(ATY (€)=
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Define ¢r(U) as the smallest ¢ > 0 that makes AU positive semi-definite. We know that 0 <
er(U) <1 -2, sowhenis ér(U) = 1— 1?2 We arrive at an answer by retracing the proof of
Proposition 2.2, but first, let us prove the following lemma:

Lemma A.3. Let T be a leaf-positive equidistant tree of height 1. Let U be an upper subtree of
T and M be the set of lowest elements of U. If ¢ = é7(U) then the matrix ATV (c) is singular.

Proof. The matrix AT>V(0) is has at most one negative eigenvalue by [2, Thm. 3]. The matrix
ATY(c) is the rank 1 update of ATY(0) by a multiple of the all-ones matrix c1,,,, hence the
eigenvalues of A7"U(c) increase continuously as c increases. This is a direct consequence of the
interlacing property for rank 1 updates [1, Thm. 1]. If \; (c) is the smallest eigenvalue of A7:U(c)
as a function of ¢, the previous statements say that A;(c) is an increasing continuous function
on ¢. We conclude that é7(U) is the minimum ¢ for which A\;(c¢) = 0, in particular, ATV (c) is
singular. O

Proposition A.4 (Equality case of Proposition 2.2). Let T be a leaf-positive ultrametric tree of
radius 1. Let U be an upper binary subtree of T, M be the set of lowest elements of U. For each
i € M, let n; be the number of leaves of 7" below i, and let n := .,/ n;. Then ép(U) =1 — % if
and only if U is star-metric and all the elements of A/ have height 0 or 1.

Remark A.5. When U equals the whole tree T, we have ¢ = ép(U). Thus, Proposition 2.3
follows as a corollary.

Proof. Let us denote (a) = 1 — L for any a € ZT. Like in Proposition 2.2 we may assume 7 is
binary.

First, we prove that ér(U) = (n) implies that U is star-metric and all the elements of M have
height 0 or 1. We prove this statement for all pairs (7, U) by induction on |V(T')| + |M|. The
base case holds trivially; consider a larger pair (7', U). At least one of the following statements
is true:

(1) There is a leaf ¢ of U with no siblings in U.

(2) There are sibling leaves 7, j of U with a common parent A =i V j.

In the first case, by an argument identical to the one in proposition 2.2, we can obtain a tree
T" and an upper subtree U’ of 7" such that the lowest elements of U’ and U are the same as well
as their descendants in 7" and 7" respectively. Furthermore A7V (c) = AT"U'(c) for all ¢ > 0,
hence éq+(U’) = ér(U) = (n). Since the induction hypothesis applies to (I”,U’), it follows that
U’ is star-metric and all the elements of M have height 0 or 1, this implies the same statement
for (T, U).

In the second case, by retracing the proof of Proposition 2.2, we arrive at the following equa-
tion

A"Y(e) = B"Y(c) + D,
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where D is the diagonal matrix diag((n;) (H (k) — H(i)), (n;) (H(h) — H(j))) and BY is a matrix
satisfying that
(L+HMB]| o
0 ‘ ATV (¢)
where U’ = U\ {i, j} is the binary upper subtree of T obtained by removing i and j from U. This

BT’U(C) ~

proves the inequality ér(U) < ér(U’). Compounding this with our assumption that ér(U) =
(n) and Proposition 2.2, we obtain that é;(U’) = (n).

By the induction hypothesis, we know then that U’ is star-metric and all the elements of M
have height 0 or 1. Now, h is a minimal element of U’, so it has to have height 0 or 1, but it
cannot have height 0, as we have assumed T is leaf-positive and % is not a leaf as the ancestor
of both ¢ and j, so H(h) = 1. This implies that U is star-metricas H(i V j) = 1.

Now we are only left with proving that the heights of i and j must be 0 or 1. For this purpose,
we use the explicit form of AT-V(c)

AT _Je- 1 k#1
(4 (D {c ) HE) k=1
For ¢ = (n) we can rewrite the matrix as

ATI((n)) = ((n) = D E(dy +E™ 1nn),

where Id), is the |[M| x | M| identity matrix and F is the diagonal matrix

0 k#1
Bu =Y 1sponm

(n)—1
The matrix E is invertible since for every k € M, (ng) < 1 and H(k) < 1. This way, we can
compute the determinant of ATV ((n)) explicitly as

(A1) det(A™Y ((n))) = lH (1= (nx) H(’f))] [1 - % > el — H?l:)) +H(k) |

keM keM

By Lemma A.3 the previous determinant is zero, but this can only happen when

[k =n.
k;j ne(1— H(k) + H(k)

Now, foreach k € M 1 < ni(1— H(k))+ H(k) < ng, hence we have the following term by term
inequality

S e (PP

keM keM

which in reality is an equality, so we must have term by term equality. This means that for
every k € M ni(1 — H(k)) + H(k) = 1, which holds only if for every k € M either H(k) =1 or
H(k) = 0 and k is a leaf of T since T is leaf-positive. We conclude that U is star-metric and the
elements of M have heights 0 or 1.
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Now we prove the converse statement. Assume that U is star-metric and the elements of M
have heights 0 or 1. Let My = {k € M: H(k) = 0} and define My, = {ke M: H(k) =1}. If
|Mq]| =0, thenn = | M| and
c—1 k#1
c k=1

(A.2) (ATY () =

for which we have already established ¢ (U) = (n). Let us prove that we can reduce to this
case. If | M7 | > 0, initially:
c—1 k#1
(AT () = q ¢ k=1l¢eM,.
c—(ng) k=1leb

Leti € My, noten; > 1. Let M/ = M U {is, ..., iy, } and let BT:Y(c) be the M’ x M’ matrix:

o))

BT (c) =
2—(n; —1)— (1)

0 ATY(¢)

where the first n, — 1 rows and columns are indexed by {is,...,%,,—1}. By reversing the row
and column reduction in Proposition 2.2, working backwards, from i,, towards i, on each of
the new n; — 1 rows and columns, the matrix BTV (c) can be made similar to a matrix C7"Y (c)
with entries:

c—1 k#£1

(CTY (N =1 ¢ k=1€MyU{ijis ... in};

c—(ng) k=1eM\{i}
and naturally AT°Y(c) is positive semidefinite if and only if CT:Y(c) is positive semidefinite.
This process can be repeated for each i € M; until one obtains an n x n matrix identical to (A.2),
allowing us to conclude that ér(U) = (n). O
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